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In this study, we represent transient and unsteady dynamics of a cylinder undergoing
vortex-induced vibration, by employing measurements of the fluid forces for a body
controlled to vibrate sinusoidally, transverse to a free stream. We generate very high-
resolution contour plots of fluid force in the plane of normalized amplitude and
wavelength of controlled oscillation. These contours have been used with an equation
of motion to predict the steady-state response of an elastically mounted body. The
principal motivation with the present study is to extend this approach to the case
where a freely vibrating cylinder exhibits transient or unsteady vibration, through the
use of a simple quasi-steady model. In the model, we use equations which define how
the amplitude and frequency will change in time, although the instantaneous forces
are taken to be those measured under steady-state conditions (the quasi-steady
approximation), employing our high-resolution contour plots.

The resolution of our force contours has enabled us to define mode regime
boundaries with precision, in the amplitude–wavelength plane. Across these mode
boundaries, there are discontinuous changes in the fluid force measurements.
Predictions of free vibration on either side of the boundaries yield distinct response
branches. Using the quasi-steady model, we are able to characterize the nature of the
transition which occurs between the upper and lower amplitude response branches.
This regime of vibration is of practical significance as it represents conditions under
which peak resonant response is found in these systems. For higher mass ratios
(m∗ > 10), our approach predicts that there will be an intermittent switching between
branches, as the vortex-formation mode switches between the classical 2P mode and
a ‘2POVERLAP’ mode. Interestingly, for low mass ratios (m∗ ∼ 1), there exists a whole
regime of normalized flow velocities, where steady-state vibration cannot occur. How-
ever, if one employs the quasi-steady model, we discover that the cylinder can indeed
oscillate, but only with non-periodic fluctuations in amplitude and frequency. The
character of the amplitude response from the model is close to what is found in free
vibration experiments. For very low mass ratios (m∗ < 0.36 in this study), this regime
of unsteady vibration response will extend all the way to infinite normalized velocity.

1. Introduction
Vortex-induced vibration is important in many practical engineering applications.

This phenomenon can lead to fatigue and failure of structures such as oil riser
tubes, chimneys and bridges. There are a large number of fundamental studies on
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Figure 1. Comparison between steady-state predicted response and directly measured free
vibration response (m∗ = 10.49, ζ = 0). The solid circle (�) denotes measured free vibration
response from Govardhan & Williamson (2006), Re = 4000 at peak amplitude. The open
circle (�) denotes predicted response from the present controlled vibration data, Re = 4000
throughout.

the subject, as well as several review articles, for example Sarpkaya (1979), Bearman
(1984) and Parkinson (1989), and more recently Williamson & Govardhan (2004).
Prior studies have investigated a selection of different flow configurations, including
rigid cylinders moving with multiple degrees of freedom, pivoted cylinders or flexible
cables. In this study, we choose to focus on the most conceptually simple case of
vortex-induced vibration, that of an elastically mounted rigid cylinder constrained to
move transverse to a flow. Such an arrangement is a paradigm in that it has been
found to yield phenomena that are exhibited in the more complex configurations.

In many previous vortex-induced vibration studies, the focus has been on the
amplitude and frequency response of the body (when it has reached a state of
steady vibration) as a function of the incoming flow velocity. Khalak & Williamson
(1999) showed that for a rigid cylinder with only transverse motion, and having a
low combined mass-damping parameter, the amplitude of vibration exhibits three
branches of response as the incoming flow velocity is increased: an initial branch,
a high-amplitude upper branch and a lower branch; see figure 1. Over much of the
response regime, the motion of the body is well represented by a sinusoidal function.
However, in this study, we also focus on the behaviour of a cylinder as it exhibits
transient or unsteady dynamics, in the transition regions between the different branches
of response. These transition regions are significant, because the peak amplitude of
vibration will often occur in an unsteady intermittent switching region between the
upper and lower response branches, as found by Govardhan & Williamson (2006), in
their recent study of peak amplitude response.

In the case of a controlled body, which is translated along a sinusoidal trajectory,
Williamson & Roshko (1988) observed a set of different vortex-formation modes,
existing within certain regimes in a plot of normalized amplitude and wavelength
of the body motion. Among the vortex-formation modes, they found were a ‘2S’
mode, representing two single vortices formed per cycle, a ‘2P’ mode, meaning two
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Figure 2. Representation of each of the main vortex-formation modes: {2S, 2P, P+S, 2PO}.
The 2P and 2PO modes show a similar pattern, with two vortices shed per cycle of vibration,
except that in the 2PO case the secondary vortex is much weaker than the primary vortex.

pairs of vortices formed per cycle, and an asymmetric ‘P+S’ mode, comprising a pair
of vortices and a single vortex in each cycle. Ongoren & Rockwell (1988) observed
some comparable vortex-formation modes, in the case of a body oscillating in-line
with the flow. The 2S, 2P and P+S modes are illustrated schematically in figure 2.
The regimes of these modes within the amplitude–wavelength plane are shown in
figure 3, in this case compiled using force measurements at a single Reynolds number
value throughout the plane. This may be compared with the Williamson & Roshko
map of regimes, compiled using flow visualization. In earlier studies (Morse &
Williamson 2009b, 2009c) we identified a further new mode of vortex-formation,
which is important because it is responsible for peak amplitudes of response in
these flows, namely the 2PO mode, also illustrated in figure 2. This mode comprises
two pairs of vortices in each cycle, but where the second vortex of each pair is
distinctly smaller than the first vortex. It is defined as the ‘2POVERLAP’ mode because
its regime in the amplitude–wavelength plane overlaps other regimes as shown in
figure 3.

Previous studies have observed different types of behaviours for the transition
from the high-amplitude upper branch to the lower branch of response. Khalak &
Williamson (1999) observed a range of normalized velocities where the amplitude
would switch intermittently between an upper branch and lower branch level; these
response branches are shown in figure 1. In other free vibration studies, rather
than a jump from the upper to lower branch, the amplitude variation was found
to be more continuous (e.g. Vikestad 1998; Bearman & Branković 2004; Hover,
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Figure 3. Contours of fluid forcing from controlled sinusoidal vibration at Re = 4000: (a)
CY sin φ with contour interval of 0.2 and (b) CEA with contour interval of 0.1. Boundaries
between modes are indicated by dashed lines; contours overlap in regions where multiple
vortex shedding modes are possible.

Davis & Triantafyllou 2004). Note that, to some extent, interpretations of the
amplitude response depend upon the algorithm used to determine amplitude from a
data set.
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Govardhan & Williamson (2000) characterized the switching behaviour for a system
of moderate mass ratio (m∗ =8.6), and also for a system of very low mass ratio
(m∗ = 1.2), where m∗ = oscillating mass/mass of the fluid displaced. They found that
for higher body mass (m∗ = 8.6), the system would spend several cycles of vibration
on one amplitude level, until there is an intermittent switch of both vortex mode
and amplitude branch, causing the system to vibrate at a different clearly discernible
amplitude level. However, for the m∗ = 1.2 case, they observed rapid variations in
amplitude (and frequency), which led them to suggest that a similar intermittent
switching is present, but that it is possibly faster in this case. In the latter case,
two distinct amplitude levels are not discernible. Therefore, in a response plot of
maximum amplitude or mean amplitude, the transition from the upper branch to the
lower branch would appear to be a continuous variation in amplitude.

Hover et al. (2004) also looked at the effect of mass ratio on the upper–lower
transition region. They measured the correlation of fluid forces at opposite spanwise
ends of a cylinder undergoing free vibration with m∗ = 3.0 and showed that the
correlation is quite high through most of the amplitude response plot, as one varies
flow velocity, except in the region of the upper–lower branch transition. Employing
hot-wire measurements along the span, they showed that the wake is quite three-
dimensional in this transition region. Interestingly, they found that for a higher mass
ratio (m∗ = 10), the force correlation becomes high throughout the entire response,
again suggesting a mass ratio effect on the nature of the upper–lower transition.
Lucor, Foo & Karniadakis (2005) computed the flow for a cylinder undergoing
transverse vibration with m∗ = 2.0 and also found that near the transition from the
upper branch to the lower branch there was a drop in the spanwise force correlation,
and their computations showed that the wake primary vorticity was distinctly three-
dimensional. On the basis of the three-dimensional nature of the wake in some cases,
one might expect the measured force coefficient to depend on the cylinder aspect
ratio. In this study, we have been careful to closely match the aspect ratio between
free and controlled vibration (length/diameter is 10.0 for the controlled vibration
cylinder and 8.3 for the free vibration cylinder). Such a close agreement may be more
difficult with more disparate aspect ratios.

Our goal, in this study, is to gain further understanding of vortex-induced vibration
when the amplitude or frequency varies in either a transient or an unsteady manner,
and we shall study both the cylinder dynamics and the wake vortex dynamics. We are
especially interested in the transition region between the upper and lower branches of
response. Note that although this may appear to be a small regime (see e.g. figure 1),
it can take up a large regime of normalized velocity (U ∗), as shown below. Our
approach will be to use controlled vibration force measurements, where the cylinder
is prescribed to move with a sinusoidal motion, and we measure the fluid forces
that act on the cylinder, over a wide range of normalized amplitude and frequency.
Controlled vibration of a cylinder has been employed by a number of investigators,
including Sarpkaya (1977), Staubli (1983), Gopalkrishnan (1993), Hover, Techet &
Triantafyllou (1998) and Carberry, Sheridan & Rockwell (2005). Staubli, and Hover
et al. have utilized their data sets to predict free vibration response plots.

In § 2, we describe the details of our experimental method which has allowed us to
obtain very high resolution contour plots of fluid forcing in the plane of normalized
amplitude and wavelength. In a previous paper (Morse & Williamson 2009b), we have
used these contours to identify a set of regimes of vortex formation, which correspond
well with the map of vortex-formation modes obtained by Williamson & Roshko
(1988) from flow visualization. These contours were also used to predict steady-state
behaviour of a freely vibrating cylinder. We include an example comparison between



434 T. L. Morse and C. H. K. Williamson

prediction and direct free vibration measurement here in figure 1, where we find close
agreement between steady-state solutions, using an equation of motion for a free
vibration system described in §§ 3.1 and 3.2.

In this study, we extend our use of the finely resolved force contours, obtained for
purely sinusoidal oscillations, to the case in which amplitude or frequency may vary
in time. For this purpose, we develop a simple quasi-steady model in § 3.3. In the
model, we use equations which define how the amplitude and frequency will change in
time. However, for the instantaneous forces, we use those measured under steady-state
conditions (the quasi-steady approximation), employing our high-resolution contour
plots.

We use this simple model to predict transient behaviour, as the system approaches
a final steady-state solution in § 4. In § 5, we apply the quasi-steady model to a system
of low mass, and identify a large regime of flow velocities for which the cylinder cannot
vibrate in steady-state motion; the model shows that it may only oscillate with an
unsteady behaviour. We are thus able to characterize the nature of the upper branch
to lower branch transition at high, moderate and low mass ratios using this approach,
in close agreement with what is found from direct measurements of free vibration.
This is followed by our conclusions in § 6.

2. Experimental details
These experiments are conducted in the Cornell-ONR Water Channel, which has

a cross-section of 38.1 × 50.8 cm. The turbulence level in the test section of the
water channel is less than 0.9 %. A cylinder of diameter 3.81 cm and length 38.1 cm is
suspended vertically in the water channel and forced to oscillate transverse to the flow
using a computer-controlled motor attached to a transverse lead screw. The controlled
vibration system is automated and may be run unattended, allowing the acquisition
of large sets of data. The flow speed is kept constant, to yield Re = 4000 throughout
the data set. Following the study of Khalak & Williamson (1996), a fixed end plate is
placed 2 mm below the bottom of the cylinder (but not in contact with the cylinder) to
encourage two-dimensional vortex shedding. We measure fluid forces on the cylinder
with a two-axis force balance utilizing LVDTs (linear variable differential transducers)
over a wide range of normalized amplitude (A∗ = A/D = amplitude/diameter) and
wavelength (λ∗ = λ/D =wavelength/diameter). It is convenient to use the parameter
λ∗ in this study, which is the normalized wavelength of the trajectory of the body
relative to the fluid; λ∗ = U/f D, where U is the free-stream velocity and f is the
imposed frequency transverse to the flow. We vary A∗ from 0.02 to 1.6, with a
resolution of 0.02, and we vary λ∗ from 2 to 16, with a resolution of 0.2, yielding a
total of 5680 individual runs. For each run, the fluid force magnitude (F1) and the
phase angle (φ) at the fundamental (body oscillation) frequency are calculated using
a Fourier series analysis. Relevant fluid forcing quantities, which will be introduced
in the next section (for example, CY sinφ and CEA), are obtained using just the force
component at the body oscillation frequency, which in general represents almost the
entire force signal content. Because the prescribed motion is perfectly sinusoidal, the
fundamental is the only frequency component of the fluid force which makes a net
contribution to the energy transfer from fluid to body motion.

In order to determine vorticity using DPIV (digital particle image velocimetry),
the flow is seeded with 14 μm silver coated glass spheres, which are illuminated by
a sheet of laser light from a 50 mJ Nd:Yag pulsed laser. Pairs of particle images
are acquired using a Jai CV-M2CL CCD camera (1600 × 1200 pixels) and analysed
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using cross-correlation of sub-images. We use a two-step windowing process (with
window shifting) to obtain particle displacements between image pairs. Vorticity
fields calculated from the image pairs are phase averaged over approximately 10
cycles. More details on the force and PIV measurements may be found in Morse &
Williamson (2009b).

3. Equations of motion and introduction of a quasi-steady model
In order to predict the dynamics of a freely vibrating cylinder from controlled

vibration force measurements (both for steady-state and transient behaviours), we
need to use the equation of motion for vortex-induced vibration in the transverse (y)
direction (normal to the flow):

mÿ + cẏ + ky = F (t), (3.1)

where m is the oscillating mass, c is the structural damping, k is the spring constant
and F (t) is the fluid force in the transverse direction.

3.1. Steady-state equations of motion for free vibration

When the body has reached steady-state vibration and the motion is synchronized
with the periodic vortex-formation mode, the force and displacement are generally
well predicted by sinusoidal functions:

y(t) = A sinωt, (3.2)

F (t) = F1 sin (ωt + φ), (3.3)

where ω = 2πf and φ is the phase angle between the fluid force and the body
displacement. The phase angle (φ) is an important quantity as it determines the
direction of energy transfer between the fluid and the body motion; it must be
between 0 and 180◦ for the fluid excitation to be positive, and hence for free vibration
to occur. Our selected set of non-dimensional parameters in this problem is presented
in table 1. In particular, the principal parameters defining the body motion are the
normalized amplitude (A∗) and the frequency ratio (f ∗) in a flow of normalized
velocity U ∗.

If we substitute (3.2) and (3.3) into the equation of motion (3.1), we can obtain the
‘amplitude equation’:

A∗ =
1

4π3

CY sin φ

(m∗ + CA) ζ

(
U ∗

f ∗

)2

f ∗, (3.4)

which includes the force coefficient in phase with the body velocity (CY sinφ),
equivalent to a normalized energy transferred from the fluid to the cylinder, which is
also called the fluid excitation. We may similarly obtain the ‘frequency equation’:

f ∗ =

√
m∗ + CA

m∗ + CEA

, (3.5)

where CA is the potential flow added-mass coefficient (CA = 1.0 for a circular cylinder),
and CEA is an ‘effective’ added-mass coefficient that includes an apparent mass effect
due to the total transverse fluid force in phase with the body acceleration (CY cos φ):

CEA =
1

2π3

CY cos φ

A∗

(
U ∗

f ∗

)2

. (3.6)
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Mass ratio m∗ m

πρD2L/4

Damping ratio ζ
c

2
√

k(m + mA)

Normalized velocity U ∗ U

fND

Normalized wavelength λ∗ λ

D
=

U

f D

Normalized amplitude A∗ A

D

Frequency ratio f ∗ f

fN

Transverse force coefficient CY

FY

1
2
ρU 2DL

Reynolds number Re
ρUD

μ

Table 1. Non-dimensional groups. In the above groups, U is the free-stream velocity, λ is the
oscillation wavelength, f is the oscillation frequency, fN is the natural frequency in water, D
is the cylinder diameter, L is the submerged cylinder length, ν is the fluid kinematic viscosity,
ρ is the fluid density and FY is the transverse fluid force. The added mass, mA, is given by
mA = CAmd , where md is the displaced fluid mass and CA is the potential added-mass coefficient
(CA = 1.0 for a circular cylinder).

The amplitude and frequency equations derived above must hold if the cylinder
is oscillating with steady-state (sinusoidal) vibration. Over much of a free vibration
response plot, as in figure 1, the body motion and the fluid forcing are quite sinusoidal
and the above equations (3.4), (3.5) and (3.6) are sufficient to accurately predict the
amplitude and frequency of motion. A principal interest in this study is to extend
free vibration prediction to cases in which the amplitude and frequency vary. We
shall see that such conditions can, for a low mass ratio, persist for large portions
of a response plot. In order to make such predictions, we employ a quasi-steady
assumption described in § 3.3.

3.2. Contours of fluid forcing

From our high-resolution controlled vibration force measurements, in figure 3 we
present contour plots of the fluid forcing quantities CY sinφ and CEA, in a plot
of normalized amplitude (A∗) and normalized wavelength (λ∗) which represent
the sinusoidal trajectory for the cylinder relative to the fluid. The normalized
wavelength is equivalent to the flow velocity normalized by the oscillation frequency
(λ∗ =U ∗/f ∗ = U/f D). The fluid excitation plot showing contours of CY sinφ in
figure 3(a) was first presented by Morse & Williamson (2009b).

In certain regions of the parameter space, we find jumps in the character of the
fluid forcing, and thus are able to identify boundaries separating different fluid forcing
regimes, which correspond to boundaries separating different vortex-shedding modes
in the Williamson & Roshko (1988) map of regimes. Vorticity measurements confirm
the modes of vortex formation in each regime, including the 2S, 2P and P+S modes,
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introduced in § 1, as well as a regime where the vortex formation is not synchronized
with the cylinder oscillation.

We also identify regions where two vortex-formation regimes overlap, as may be
seen in the contours of figure 3. In these regions, the wake may switch intermittently
between two distinct modes even as the cylinder is vibrating with constant amplitude
and frequency, as first shown by Morse & Williamson (2009b). In the principal overlap
region, we identify a 2PO’ (or 2POVERLAP) mode of vortex formation where two pairs
of vortices are shed per cycle of oscillation (similar to the classical 2P mode) but
where the secondary vortex is much weaker than the primary vortex in each pair,
as described briefly in § 1 (see figure 2d ). The existence of an overlapping mode
is significant because it is associated with the maximum amplitude where positive
excitation occurs. It will thus be the mode yielding the peak resonant amplitude in
free vibration. We shall also see that the overlap of the 2PO mode with the 2S and 2P
regimes leads to some interesting unsteady body dynamics, which are discussed in §§ 4
and 5. A comprehensive characterization of the different changes was found as one
crosses the regime boundaries, shown in figure 3, including time traces and spectra
for the different forcing regimes, may be found in Morse & Williamson (2009b).

From the force contours in figure 3, we can predict the steady-state (sinusoidal)
response (amplitude, A∗, and frequency, f ∗) of a freely vibrating cylinder for a given
set of system parameters {m∗, ζ, U ∗}. We simply find the point (or points) in the
amplitude–wavelength plane where both the amplitude equation (3.4) and frequency
equation (3.5) are satisfied. By varying the normalized velocity (U ∗), we can build up
an entire response plot. As an introduction to the present results, we show in figure 1
that the steady-state response of a freely vibrating cylinder can be accurately predicted
(taken from Morse & Williamson 2009c). The initial branch will have a 2S vortex-
formation mode, the upper branch a 2PO mode and the lower branch a 2P mode.

3.3. Quasi-steady model for free vibration response

In this work, we would like to extend our prediction of freely vibrating cylinder
dynamics to transient or unsteady behaviour. To do this, we will need to introduce a
quasi-steady assumption. Specifically, we assume that as the amplitude or frequency
of oscillation is varying, the instantaneous fluid forcing (magnitude and phase) is
given by our controlled vibration force contours for purely sinusoidal motion at the
instantaneous value of the amplitude and frequency. Naturally, we expect that this
assumption will be more accurate for slower variations in amplitude or frequency.

Our goal is to implement this quasi-steady assumption in a model that is both
simple and useful. Therefore, we will not attempt to determine the cylinder dynamics
in terms of y(t) but rather we will assume that the motion takes on a sinusoidal
form, but with varying amplitude and frequency. Therefore, we will be solving for
A∗(τ ) and f ∗(τ ), where τ = t/T (or time/period) of oscillation, and the solution
will be advanced in fractions of the oscillation period. We know that as the system
approaches a steady-state solution (constant amplitude and frequency), the model
should reduce to the steady-state amplitude and frequency equations determined
above, (3.4) and (3.5).

We use the form of the amplitude equation to define an ‘effective damping’, ζeff ,
which includes the structural damping as well as the effect of the fluid excitation,
(CY sinφ), as follows:

ζeff = ζ − CY sinφ

4π3 (m∗ + CA) A∗

(
U ∗

f ∗

)2

f ∗. (3.7)
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Similarly, we define an ‘effective mass’, m∗
eff , which includes the structural mass as

well as an effective added mass due to the fluid forcing in phase with acceleration
(CY cos φ) as follows:

m∗
eff = m∗ +

1

2π3

CY cosφ

A∗

(
U ∗

f ∗

)2

= m∗ + CEA. (3.8)

We then assume that the system behaves like a simple spring-mass-damper system
except that the mass (m∗

eff ) and the damping (ζeff ) can dynamically vary depending
on the instantaneous amplitude or frequency. The effective damping will determine if
the amplitude increases or decreases as follows:

dA∗

dτ
=

(
−2πζeff f ∗) A∗, (3.9)

which is the well-known equation for amplitude decay in damped harmonic vibration.
The effective mass will affect the frequency of oscillation as follows:

f =
1

2π

√
k

meff

. (3.10)

We normalize this frequency by the natural frequency in still water (fN ) to yield

f ∗ =

√
m∗ + CA

m∗
eff

. (3.11)

To implement the model, we first need to define the system parameters {m∗, ζ, U ∗}
and initial values for A∗ and f ∗. Then we look up the values of (CY sinφ) and CEA

from the contours in figure 3. At this point, we use (3.9) to determine the change in
amplitude over one time step, and we then advance A∗. Similarly, we use (3.11) to
find the new value of frequency f ∗ at the end of the time step. We let the time step,
Δτ , vary so that the amplitude or frequency does not change by too great an amount
(more than typically 5 %) in one iteration.

A complication with implementing the model is that at some points in the
amplitude–wavelength plane there are two possibilities for the fluid forcing, as two
modes of vortex formation are possible, shown as overlapping contours in figure 3.
Of course, this overlap phenomenon (between the 2S and 2PO modes and between
the 2PO and 2P modes) is what leads to some of the interesting behaviour observed
in vortex-induced vibration systems, such as the intermittent switching between the
upper and lower branches of response, as we explain in § 4.2. We will therefore handle
the overlap regions in two different ways, as described in the following sections.

4. Transient behaviour for moderate and high mass ratio systems
For a vortex-induced vibration system, the equilibrium solution (i.e. the amplitude

and frequency for steady-state vibration) will be the intersection of the curves along
which the amplitude equation (3.4) is satisfied, and the curve along which the frequency
equation (3.5) is satisfied. The curves will generally not be continuous, showing jumps
when the vortex-formation mode changes. In this section, we use the quasi-steady
model to determine how the equilibrium solutions are approached.

4.1. Approaching a lower branch equilibrium

We begin with a simple starting case: a system having moderate mass ratio, m∗ =10.0,
and very low damping, ζ = 0.001, at normalized velocity, U ∗ =8.0. For this case, there
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Figure 4. Prediction of transient behaviour for an equilibrium solution in the lower branch,
m∗ = 10, ζ = 0.001, U ∗ = 8.0. In (a) we show how the equilibrium solution �• is approached
for arbitrary initial conditions �. The solid circle (�) indicates location after each cycle of
oscillation. In (b) we show time traces for the two initial conditions investigated.

is an equilibrium solution in the lower branch of a free vibration response, as shown
by the bull’s eye in figure 4(a). We choose to look for solutions in the (A∗, U ∗/f ∗)
space, because that is the parameter space for our controlled vibration contours (note
that λ∗ = U ∗/f ∗). This is equivalent to the (A∗, f ∗) space because we are fixing the
value of the normalized velocity U ∗.
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Employing our quasi-steady model, we give the system arbitrary initial conditions
and observe how the system approaches the equilibrium solution. As can be seen in
figure 4(b), for this example, it happens to take longer for a low-amplitude initial
condition to reach the equilibrium solution than for a high-amplitude initial condition.
This is because the contour levels of fluid excitation (CY sinφ) are closer together for
the higher amplitude approach to the equilibrium solution (there is a steeper gradient
of excitation versus amplitude). In summary, the technique appears to work well in
such examples.

4.2. Intermittent switching between upper and lower branch equilibria

One of our main goals in developing our quasi-steady model is to predict the cylinder
dynamics in the upper to lower branch transition regions of a free vibration response.
In figure 5(a), a system with U ∗ = 6.3 will have two equilibrium solutions, depending
on the mode of vortex formation. For the 2PO mode, the equilibrium solution will lie
in the upper branch; for the pure 2P mode, the equilibrium solution will lie in the
lower branch.

In order to observe the switching behaviour, we run the quasi-steady model twice.
In the first case, we give the system the initial conditions corresponding to the upper
branch equilibrium (see bull’s eye for the 2PO mode in figure 5a), but we use the
force contours for the 2P mode at these same initial conditions. The 2P mode yields
negative fluid excitation at the higher upper branch amplitude, so it cannot sustain
free vibration; the amplitude must drop to the lower branch level, where the fluid
excitation is positive. We then perform the reverse, selecting the lower branch initial
conditions, but using the 2PO mode forces at those same conditions, and observe
how the amplitude increases to the upper branch. For a freely vibrating cylinder,
we expect that the switch in vortex-formation mode will happen randomly. Here
we arbitrarily decide when the vortex-formation mode switches and build up an
intermittent switching time trace, shown in figure 5(b), which we compare with an
actual intermittent switching time trace from Govardhan & Williamson (2000), in
figure 5(c). In choosing moments in time where we switch modes, we are guided by
the experimental data in figure 5(c) in this particular case.

We are interested in the number of cycles required for the amplitude to make
a transition. We see that a typical experimental drop in amplitude from the upper
branch to the lower branch is well represented by our quasi-steady model predictions.
However, the experimental rise in amplitude from the lower branch to the upper
branch appears to take a few cycles longer than our predictions. We attribute this to
the stipulation in our model that the vortex-formation mode changes instantaneously.
For a real system, there may be several cycles of oscillation over which the vortex-
formation mode changes from 2P to 2PO, before the system can start to more rapidly
increase amplitude.

We can make an estimate of how fast the vortex-formation mode switches,
by observing time traces of the phase angle from our controlled vibration force
measurements, in figure 6. The 2P mode will have a phase angle of around 180◦

while the 2PO mode will have a phase angle of around 0◦ (see Morse & Williamson
2009b for a detailed description of the force characteristics for each mode. For lower
amplitudes, the switch in phase takes several cycles of vibration, whereas at higher
amplitudes, the switch occurs nearly instantaneously, as may be observed in figure 6.
Therefore, at low amplitudes, when the vortex-formation mode switches from 2P
to 2PO, we expect that several additional cycles of oscillation are required for the
vortex-formation mode to change. Our model does not include such an effect.
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Figure 5. Prediction of intermittent switching transient behaviour, m∗ = 10, ζ = 0.001, U ∗ =
6.3. In (a) the quasi-steady model to determine the dynamics of the cylinder as it moves
between an equilibrium point �• in the 2P and 2PO regimes (the lower and upper branches). In
(b) we show a predicted time trace, which we compare with an actual free vibration intermittent
switching time trace at m∗ = 8.63 from Govardhan & Williamson (2000) in (c).

5. Unsteady behaviour for very low mass ratio systems
We now turn to another case in which the quasi-steady model proves to be quite

revealing: that of a very low mass ratio system. In § 3, we showed how we may predict
the response of a freely vibrating cylinder at moderate mass ratio, m∗ =10. One of
the well-known results from previous vortex-induced vibration studies is that, as the
mass ratio decreases, there is a widening of the range of normalized velocity (U ∗) over
which vibration occurs (an effect observed originally by Ramberg & Griffin 1981).
We are in a position to predict this result employing our controlled vibration data.
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5.1. The effect of reducing mass ratio on the upper branch to lower branch transition

At moderate mass ratio, m∗ = 15 (and zero damping), we use our controlled vibration
data to predict the steady-state response of a free vibration system. The regime
of response extends up to U ∗ ≈ 10, as shown in figure 7(a). Also, there is a small
range of normalized velocity for which two steady-state solutions exist (thus two
possible amplitudes of vibration) in the region between the upper and lower response
branches close to U ∗ = 6. In § 4.2, we indicated how this is associated with intermittent
switching between the branches. As we decrease mass ratio, we find a certain special
value (m∗ = 7.7) where the upper and lower branches no longer overlap, and there is
one value of amplitude for each value of normalized velocity as shown in figure 7(b).

As we decrease mass ratio even further to m∗ = 1.0 (still with zero damping), we
find a further widening of the regime of velocity (U ∗) for which vibration occurs as
shown in figure 8(a). However, we encounter a seemingly intractable problem: we
find large regimes of velocity (in this case, U ∗ = 7 to 11 in figure 8) where there
is no steady-state solution to the equations of motion, i.e. no points for which both
the amplitude and frequency equations are satisfied. This would seem to suggest that
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value of 7.7, there is no upper branch–lower branch overlap.

vortex-induced vibration cannot occur in these regions, in direct contradiction with
published free vibration results.

In the transition region between the upper and lower branches, free vibration
response is generally not precisely sinusoidal and exhibits variations in amplitude and
frequency, as found by Govardhan & Williamson (2000). This would suggest that our
controlled vibration force measurements (from purely sinusoidal motion) would not
be easily applicable. However, even in this case, we shall apply, in an approximate
manner, our quasi-steady model to determine the peak amplitudes.

In running the model, we encounter situations in which the solution may reside
within the 2P–2PO overlap region. We then need to determine which mode of vortex
formation the system takes on, as a function of time. On the basis of what one finds
typically in free vibration experiments, we will assume that there is a 10 % chance,
within each cycle of motion of the body, that the mode will switch between 2P and
2PO. Obviously, one has to make some assumption here, and it is clear that this is
a somewhat arbitrary stipulation. However, it turns out from the model results that
the value chosen for the probability of mode switch has very little influence on the
response plot that we construct in figure 8(b). (For example, if we assume between
5 % and 30 % chance for a mode switch within each cycle, this would alter the
resulting amplitude by typically less than 3 %.)
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When we run our quasi-steady model, we find that the amplitude and frequency
fluctuate as shown in figure 8(c). Computing the average amplitude of the top 10 %
of the peaks, which is the parameter used by Hover et al. (1998) and Govardhan &
Williamson (2006), we find that the predicted amplitude in this unsteady region fits
well with the rest of our predicted response plot as shown in figure 8(b).

If we compare our complete predicted response plot (combining the steady-state
solutions with the non-steady solutions) with directly measured free vibration response
(for very low mass ratios around 1.0) from Govardhan & Williamson (2000), we find
good qualitative agreement, both in the amplitude response and in the frequency
response as shown in figure 9. We note that the slightly higher amplitudes of the
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upper branch from the free vibration experiments are due to the effects of the
higher Reynolds number in this case, consistent with the results of Govardhan &
Williamson (2006). In summary, the quasi-steady model appears to compare well
with direct free vibration measurements. The model, employed at very low mass
ratios, exhibits a regime of unsteady vibration, which contrasts with the character
of intermittent mode jumps between bistable steady-state solutions associated with
higher mass ratios.
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5.2. Regime of unsteady response solutions in the A∗–U ∗ plane

In the example described above, we focused on the case of a system at zero damping.
If we consider higher values of the damping, we may define an entire region in the
(U ∗, A∗) plane where no steady-state solution is possible, as shown in figure 10, for
m∗ = 1.0. This map will be unique for each value of the mass ratio. The extent of the
regime without steady solutions will grow as the mass ratio is reduced.

We may briefly explain how the ‘void’, where there exist no steady-state solutions,
can occur. In the plot of amplitude versus wavelength (A∗–λ∗), mode regime
boundaries are carefully defined from force measurements. A sketch of a representative
boundary in figure 11(a) indicates that the value of CEA jumps in value as it crosses
the boundary, just as it does for the boundary between the 2S and 2P modes in
figure 3(b). If, on the other hand, one now replots the boundary in the plane of
amplitude versus normalized velocity (A∗ versus U ∗) then one must multiply all λ∗

values (or U ∗/f ∗ values) in figure 11(a) by the relevant normalized frequency (f ∗) to
construct the new plot in figure 11(b). (For a given mass ratio, m∗, (3.5) will yield
this frequency, f ∗). Our problem arises because the frequency (f ∗) involves CEA, and
therefore has a jump change in value across the regime boundary. Thus, the regime
boundary on the left for the 2S mode in figure 11(a) will get pulled to the left by
the lower value of f ∗ on this side, while the 2P boundary in figure 11(a) gets pulled
to the right by the higher value of f ∗. In this way, a void appears between these
two mode regimes, 2S and 2P in figure 11(b), where no steady-state solutions are
found. As mass (m∗) becomes smaller so this difference in frequency (f ∗) across the
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boundary gets larger, and the void grows, ultimately extending to infinite U ∗, if the
mass falls below a ‘critical’ value described in the next section.

5.3. Frequency response at very low mass ratio

We can also study the effect of very low mass ratio on the frequency response. For
our brief discussion here, we focus on a system with zero damping. In the upper
branch, the frequency ratio (f ∗) is typically slightly higher than 1.0, as in figure 9.
In the lower branch, the frequency is typically nearly constant over a wide range of
normalized velocity; the value of this frequency increases, as mass ratio is diminished,
as predicted from (3.5). The roughly constant value of f ∗ in the lower branch occurs
because CEA is nearly constant throughout the lower branch, as may be seen in
the CEA contours of figure 3. In between the upper and lower branches, only an
unsteady vibration response exists for low mass ratio, and the frequency is found
to increase approximately linearly with normalized velocity as we found in figure 9.
The effect of mass ratio on the frequency response is found in figure 12, where one
can immediately see the similar types of responses that we saw earlier in figure 9,
except that the unsteady vibration regime grows dramatically as the mass is reduced
to m∗ = 0.5 and below.

At this point, we would like to describe what happens at very low mass ratios,
m∗ < 1. We first need to introduce the concept of a critical mass. From the frequency
equation (3.5), we see that the effective added mass (CEA) can play an important
role in determining the frequency ratio (f ∗ = f/fN ). Govardhan & Williamson (2000)
found that throughout the lower response branch in free vibration, the effective added
mass was given approximately by CEA = −0.54, so that the frequency ratio is given
by

f ∗ =

√
m∗ + CA

m∗ − 0.54
. (5.1)
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Therefore, as the mass ratio (m∗) is reduced, the frequency ratio (f ∗) in the lower
branch can become large. Furthermore, when the mass ratio falls below a critical
value of m∗

crit = 0.54, the lower branch will never be reached, and ceases to exist.
The upper branch will then persist indefinitely, up to infinite normalized velocity
(U ∗ → ∞), giving an infinitely wide regime of resonances. In Morse & Williamson
(2009a), we show the influence of Reynolds number on the value of the critical mass,
and for Re = 4000, its value is m∗

crit = 0.36.
For extremely low mass, below the critical mass ratio, m∗ < 36 %, the lower branch

ceases to exist. In this case, the regime of large amplitude vibrations will extend from
the end of the upper branch (U ∗ ≈ 7) all the way to infinite normalized velocity. The
example in figure 12, for m∗ = 0.30, shows the unsteady vibration frequency response
increasing throughout the range of plotted U ∗ at least up to 40, but in fact this trend
will persist to infinite U ∗, since m∗ <m∗

crit in this case.
The present quasi-steady model somewhat changes our interpretation of what

happens when the mass ratio falls below the critical value (36 % in this case).
Govardhan & Williamson (2000, 2002) described the critical mass phenomenon as
involving an extension of the upper branch to infinite U ∗. In fact, on the basis of the
study here, we see that, rather than the upper branch extending to infinite U ∗, it is
the unsteady vibration response (which is a state between upper and lower branches)
that is found to extend to infinite normalized velocity.
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6. Conclusions
In this study, we have defined the fluid forces acting on a cylinder under controlled

transverse vibration in a flow. Our high-resolution contour plots have been discussed
before by Morse & Williamson (2009b,c), where extensive steady-state vibrations
have been studied, along with the details of the vortex-formation modes. In this
study, we also make use of the accurate determination of mode regime boundaries
in the plane of amplitude–wavelength, which have been defined for the first time in
such controlled vibration experiments. (Previous studies show a reasonably smooth
variation of forces throughout the amplitude–wavelength plane.) The definition of
the regime boundaries in our studies has enabled us, for the first time, not only to
predict the general shape of amplitude response plots but also to show the existence
of all the principal response branches found in free vibration experiments. However,
the focus in this study is to develop a quasi-steady approach that can indicate what
happens in cases of transient or unsteady vibration.

Cases of unsteady vibration arise when the response exhibits a transition between
different response branches, which may seem like an unusual situation, but in fact it
is quite common in free vibration systems, and is significant because these unsteady
vibrations represent the conditions giving the peak amplitude of response in low-mass
systems. In essence, we find that significant portions of the response plot, especially for
the low mass ratios, are actually non-periodic. Such a regime in a response plot, which
we refer to as a ‘void’, surprisingly does not admit steady-state solutions, although we
know from free vibration that large vibrations can exist. The system cannot satisfy
both the amplitude and frequency equations, defined in this study, at the same time.
The key to understanding this phenomenon of a predicted ‘void’ is observing how the
fluid forces make a distinct jump across the mode regime boundaries in the amplitude–
wavelength plane. In an approximate manner, we attempt here to represent the system
within these voids, using the quasi-steady model, and the resulting amplitude response
predictions are surprisingly similar to what is found in high-amplitude free vibration
experiments for very low mass ratios. The predicted response frequency variation is
almost linearly increasing in the upper–lower branch transition, but becomes more
constant when the response is firmly in the lower branch, which is also close to
what is found in free vibration. For extremely low mass ratios, below a critical
value (m∗ < 0.36 in this case), the unsteady response regime stretches up to infinite
normalized flow velocity, U ∗ → ∞. In other words, the regime without the presence
of steady-state solutions is the one that extends to infinite flow velocities, rather than
the upper branch steady-state solutions, as supposed by Govardhan & Williamson
(2002).

Our model can also represent the intermittent switching of modes, for higher mass
ratios, that are found in free vibration. For moderate mass ratios (m∗ of order 10),
there exists a range of normalized velocities, U ∗, for which there are two steady-
state solutions to the equations of motion (corresponding to the upper and lower
response branches). In this case, the response will switch intermittently between them
depending on the vortex-formation mode selected by the flow (the 2P or 2PO mode).

An unanswered question is what are the wake vortex dynamics in the transition
region at low mass ratio? Of course, we do not expect that the entire wake is switching
rapidly between a 2P and 2PO vortex-formation mode. Lucor et al. (2005) found that
the wake was quite three-dimensional in the upper to lower branch transition regions,
in their case for m∗ = 2.0. What seems plausible is that the wake shows different
vortex dynamics at different points along the cylinder span in the transition region
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yielding a net fluid forcing which is in between the forcing for the 2P and 2PO modes.
In contrast, for the intermittent switching behaviour at higher mass ratio, we suggest
that the wake is largely two-dimensional for much of the time, when the response is
seated for long periods on one branch or the other, between the intermittent mode
switching.
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